Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

???searchArticles.header???



Filter by Date: Year(4-digits)   to 

???application.search.numResults???


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

???manualAddArticle.find??? ???manualAddArticle.link.add???


???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???

( ???images.icon???)
Search Results

Xenopus TACC2 is a microtubule plus end-tracking protein that can promote microtubule polymerization during embryonic development., Rutherford EL, Carandang L, Ebbert PT, Mills AN, Bowers JT, Lowery LA., Mol Biol Cell. October 15, 2016; 27 (20): 3013-3020.                    


Xenopus Mcm10 is a CDK-substrate required for replication fork stability., Chadha GS, Gambus A, Gillespie PJ, Blow JJ., Cell Cycle. August 17, 2016; 15 (16): 2183-2195.            


Xenopus Oocyte As a Model System to Study Store-Operated Ca(2+) Entry (SOCE)., Courjaret R, Machaca K., Front Cell Dev Biol. June 24, 2016; 4 66.              


Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability., Dubińska-Magiera M, Chmielewska M, Kozioł K, Machowska M, Hutchison CJ, Goldberg MW, Rzepecki R., Protoplasma. May 1, 2016; 253 (3): 943-956.            


xCyp26c Induced by Inhibition of BMP Signaling Is Involved in Anterior-Posterior Neural Patterning of Xenopus laevis., Umair Z, Kumar S, Lee U, Lee SH, Kim JI, Kim S, Park JB, Lee JY, Kim J., Mol Cells. April 30, 2016; 39 (4): 352-7.        


Xenopus Limb bud morphogenesis., Keenan SR, Beck CW., Dev Dyn. March 1, 2016; 245 (3): 233-43.            


Xenopus as a model system for studying pancreatic development and diabetes., Kofent J, Spagnoli FM., Semin Cell Dev Biol. March 1, 2016; 51 106-16.  


Xenopus as a model organism for birth defects-Congenital heart disease and heterotaxy., Duncan AR, Khokha MK., Semin Cell Dev Biol. March 1, 2016; 51 73-9.    


Xenopus cell-free extracts and their contribution to the study of DNA replication and other complex biological processes., Blow JJ, Laskey RA., Int J Dev Biol. January 1, 2016; 60 (7-8-9): 201-207.


Xenopus: An in vivo model for imaging the inflammatory response following injury and bacterial infection., Paredes R, Ishibashi S, Borrill R, Robert J, Amaya E., Dev Biol. December 15, 2015; 408 (2): 213-28.                                              


Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients., Nakayama T, Fisher M, Nakajima K, Odeleye AO, Zimmerman KB, Fish MB, Yaoita Y, Chojnowski JL, Lauderdale JD, Netland PA, Grainger RM., Dev Biol. December 15, 2015; 408 (2): 328-44.                              


Xanthones Isolated from the Pericarp of Mangosteen Inhibit Neurotransmitter Receptors Expressed in Xenopus Oocytes., Leewanich P, Suksamram S., J Med Assoc Thai. November 1, 2015; 98 Suppl 10 S118-23.


Xenopus laevis as a Model to Identify Translation Impairment., de Broucker A, Semaille P, Cailliau K, Martoriati A, Comptdaer T, Bodart JF, Destée A, Chartier-Harlin MC., J Vis Exp. September 27, 2015; (103):


Xenopus tropicalis Genome Re-Scaffolding and Re-Annotation Reach the Resolution Required for In Vivo ChIA-PET Analysis., Buisine N, Ruan X, Bilesimo P, Grimaldi A, Alfama G, Ariyaratne P, Mulawadi F, Chen J, Sung WK, Liu ET, Demeneix BA, Ruan Y, Sachs LM., PLoS One. September 4, 2015; 10 (9): e0137526.          


Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway., Vitorino M, Silva AC, Inácio JM, Ramalho JS, Gur M, Fainsod A, Steinbeisser H, Belo JA., PLoS One. August 13, 2015; 10 (8): e0135504.                                    


Xenopus laevis oocyte maturation is affected by metal chlorides., Marin M, Slaby S, Marchand G, Demuynck S, Friscourt N, Gelaude A, Lemière S, Bodart JF., Toxicol In Vitro. August 1, 2015; 29 (5): 1124-31.


Xenbase: Core features, data acquisition, and data processing., James-Zorn C, Ponferrada VG, Burns KA, Fortriede JD, Lotay VS, Liu Y, Brad Karpinka J, Karimi K, Zorn AM, Vize PD., Genesis. August 1, 2015; 53 (8): 486-97.          


Xenopus Claudin-6 is required for embryonic pronephros morphogenesis and terminal differentiation., Sun J, Wang X, Li C, Mao B., Biochem Biophys Res Commun. July 3, 2015; 462 (3): 178-83.          


Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo., Waghray S, Williams C, Coon JJ, Wickens M., RNA. July 1, 2015; 21 (7): 1335-45.


Xenopus laevis Oocytes as a Model System for Studying the Interaction Between Asbestos Fibres and Cell Membranes., Bernareggi A, Ren E, Borelli V, Vita F, Constanti A, Zabucchi G., Toxicol Sci. June 1, 2015; 145 (2): 263-72.


Xenopus as a Model for GI/Pancreas Disease., Salanga MC, Horb ME., Curr Pathobiol Rep. June 1, 2015; 3 (2): 137-145.


Xenopus TACC1 is a microtubule plus-end tracking protein that can regulate microtubule dynamics during embryonic development., Lucaj CM, Evans MF, Nwagbara BU, Ebbert PT, Baker CC, Volk JG, Francl AF, Ruvolo SP, Lowery LA., Cytoskeleton (Hoboken). May 1, 2015; 72 (5): 225-34.          


Xepac protein and IP3/Ca2+ pathway implication during Xenopus laevis vitellogenesis., Serrano Mde L, Luque ME, Sánchez SS., Zygote. February 1, 2015; 23 (1): 99-110.


Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels., Cristofori-Armstrong B, Soh MS, Talwar S, Brown DL, Griffin JD, Dekan Z, Stow JL, King GF, Lynch JW, Rash LD., Sci Rep. January 12, 2015; 5 14763.                                


Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes., Karpinka JB, Fortriede JD, Burns KA, James-Zorn C, Ponferrada VG, Lee J, Karimi K, Zorn AM, Vize PD., Nucleic Acids Res. January 1, 2015; 43 (Database issue): D756-63.    


Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites., Kim YJ, Bahn M, Kim YH, Shin JY, Cheong SW, Ju BG, Kim WS, Yeo CY., Dev Biol. January 1, 2015; 397 (1): 129-39.                                          


Xenopus Cytogenetics and Chromosomal Evolution., Krylov V, Tlapakova T., Cytogenet Genome Res. January 1, 2015; .


Xenopus in Space and Time: Fossils, Node Calibrations, Tip-Dating, and Paleobiogeography., Cannatella D., Cytogenet Genome Res. January 1, 2015; .


Xenopus Nkx6.3 is a neural plate border specifier required for neural crest development., Zhang Z, Shi Y, Zhao S, Li J, Li C, Mao B., PLoS One. December 15, 2014; 9 (12): e115165.            


Xhe2 is a member of the astacin family of metalloproteases that promotes Xenopus hatching., Hong CS, Saint-Jeannet JP., Genesis. December 1, 2014; 52 (12): 946-51.            


Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character., Fish MB, Nakayama T, Fisher M, Hirsch N, Cox A, Reeder R, Carruthers S, Hall A, Stemple DL, Grainger RM., Dev Biol. November 15, 2014; 395 (2): 317-330.                  


XTACC3-XMAP215 association reveals an asymmetric interaction promoting microtubule elongation., Mortuza GB, Cavazza T, Garcia-Mayoral MF, Hermida D, Peset I, Pedrero JG, Merino N, Blanco FJ, Lyngsø J, Bruix M, Pedersen JS, Vernos I, Montoya G., Nat Commun. September 29, 2014; 5 5072.            


XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4., Klein Douwel D, Boonen RA, Long DT, Szypowska AA, Räschle M, Walter JC, Knipscheer P., Mol Cell. May 8, 2014; 54 (3): 460-71.


Xenopus embryonic epidermis as a mucociliary cellular ecosystem to assess the effect of sex hormones in a non-reproductive context., Castillo-Briceno P, Kodjabachian L., Front Zool. February 6, 2014; 11 (1): 9.                


Xenopus Cdc7 executes its essential function early in S phase and is counteracted by checkpoint-regulated protein phosphatase 1., Poh WT, Chadha GS, Gillespie PJ, Kaldis P, Blow JJ., Open Biol. January 8, 2014; 4 (1): 130138.                


Xenopus egg extracts as a simplified model system for structure-function studies of dynein regulators., Zyłkiewicz E, Stukenberg PT., Methods Mol Biol. January 1, 2014; 1136 117-33.


Xenopus egg cytoplasm with intact actin., Field CM, Nguyen PA, Ishihara K, Groen AC, Mitchison TJ., Methods Enzymol. January 1, 2014; 540 399-415.


Xenopus cadherin 5 is specifically expressed in endothelial cells of the developing vascular system., Neuhaus H, Metikala S, Hollemann T., Int J Dev Biol. January 1, 2014; 58 (1): 51-6.            


Xenopus in vitro assays to analyze the function of transmembrane nucleoporins and targeting of inner nuclear membrane proteins., Eisenhardt N, Schooley A, Antonin W., Methods Cell Biol. January 1, 2014; 122 193-218.


XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules., Reber SB, Baumgart J, Widlund PO, Pozniakovsky A, Howard J, Hyman AA, Jülicher F., Nat Cell Biol. September 1, 2013; 15 (9): 1116-22.


Xenopus laevis nucleotide binding protein 1 (xNubp1) is important for convergent extension movements and controls ciliogenesis via regulation of the actin cytoskeleton., Ioannou A, Santama N, Skourides PA., Dev Biol. August 15, 2013; 380 (2): 243-58.                                  


Xenopus Nkx6.1 and Nkx6.2 are required for mid-hindbrain boundary development., Ma P, Xia Y, Ma L, Zhao S, Mao B., Dev Genes Evol. July 1, 2013; 223 (4): 253-9.


X-ray phase-contrast in vivo microtomography probes new aspects of Xenopus gastrulation., Moosmann J, Ershov A, Altapova V, Baumbach T, Prasad MS, LaBonne C, Xiao X, Kashef J, Hofmann R., Nature. May 16, 2013; 497 (7449): 374-7.      


Xenopus radial spoke protein 3 gene is expressed in the multiciliated cells of epidermis and otic vesicles and sequentially in the nephrostomes., Zhao L, Meng YP, Shi DL., Dev Genes Evol. May 1, 2013; 223 (3): 183-8.


Xenopus cytoplasmic linker-associated protein 1 (XCLASP1) promotes axon elongation and advance of pioneer microtubules., Marx A, Godinez WJ, Tsimashchuk V, Bankhead P, Rohr K, Engel U., Mol Biol Cell. May 1, 2013; 24 (10): 1544-58.                  


Xenopus oocyte meiosis lacks spindle assembly checkpoint control., Shao H, Li R, Ma C, Chen E, Liu XJ., J Cell Biol. April 15, 2013; 201 (2): 191-200.          


Xenopus laevis tadpoles can regenerate neural retina lost after physical excision but cannot regenerate photoreceptors lost through targeted ablation., Lee DC, Hamm LM, Moritz OL., Invest Ophthalmol Vis Sci. March 13, 2013; 54 (3): 1859-67.


Xenbase: expansion and updates of the Xenopus model organism database., James-Zorn C, Ponferrada VG, Jarabek CJ, Burns KA, Segerdell EJ, Lee J, Snyder K, Bhattacharyya B, Karpinka JB, Fortriede J, Bowes JB, Zorn AM, Vize PD., Nucleic Acids Res. January 1, 2013; 41 (Database issue): D865-70.    


Xnr3 affects brain patterning via cell migration in the neural-epidermal tissue boundary during early Xenopus embryogenesis., Morita M, Yamashita S, Matsukawa S, Haramoto Y, Takahashi S, Asashima M, Michiue T., Int J Dev Biol. January 1, 2013; 57 (9-10): 779-86.          


Xenopus laevis RIC-3 enhances the functional expression of the C. elegans homomeric nicotinic receptor, ACR-16, in Xenopus oocytes., Bennett HM, Lees K, Harper KM, Jones AK, Sattelle DB, Wonnacott S, Wolstenholme AJ., J Neurochem. December 1, 2012; 123 (6): 911-8.          

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 ???pagination.result.next???